

Instand Selfpriming

Fastest self-priming in the world!

The internal structure with vapor-liquid separation and the action of the whirl chamber, that the separating board and self-priming circulation hole prevent air suction, reduce self-priming loss and miximize the pump ability. While compact, the suction head is 5 m in just 2 minutes and the self-priming ability is the fastest in the world. It is our original valveless technology.

Resistant to dry running!

- The world's recognized valveless structure.
- Our original valveless structure (International patent) leaves self-priming liquid for restart without check valves and resists dry running.
- Bearing structure of heat release / insulation.
- When dry running, usually sliding parts have friction heat and the shaft and bearing are raised to high temperature. It causes the pump damage. However, heat insulating material which we use for the sliding parts and our heat release structure reduce the temperature and cause less deformation.
- Air lock prevention function.
- During self-priming, air enters and air spot occurs, but the internal rear casing and our original Impeller shape make air move and release.

Smallest footprint in this class!

Compact and light body. The pump (1.5 kW and more) has powerful rare earth magnets and delivers intense power while compact. (Using for high specific gravity liquid is also available.)

Design concept-changeing our self-priming power 5m in 2 minutes!

Apprications

For pumping/transferring liquid from the top of a tank or measures against envirnment / earthquake.

The design concept of YD-GV is "More compact". In particular, the pump (1.5 kW and more) has powerful rare earth magnets. It is suitable for facility renewal or process line design suffering from installaion space.

For pumping up from a deep tank / to high.

It is possible to pump up from a deep tank or to high (25 m) by incredible self-priming ability and miximixes the stable efficient self-priming ability regardless of large or small of the bore.

Horizontal / up and down piping is available.

It is possible to arrange the suction piping under stringent conditions which conventional pumps seem not to be used such as 10 m horizontal / up and down piping or no space neatr a tank. (Others: For transferring liquid from a clean room to outdoor.)

For liquid which is easy of gas lock.

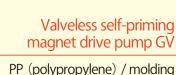
For sparking liquid (hydrogen peroxide, hydrogen peroxide, sodium carbonate, etc.) that gas stays in the pump / piping, the valveless self-priming pump, which takes all possible measures, gives full scope to the ability.

For transferring high specific gravity liquid.

No need for impeller cut nor sellection of the upper level pump for deficiency in performance. It is possible to select the pump efficiency by torque up of the motor or magnet without the performance down.

Lead the world Evolution of valveless self-primiing pump

The world's first valveless pump born in 1974. It was developped by the original idea which defied the pump's common wisdom that check valves, the main cause of the pump, was removed.


No valve self-priming SV

Mechanical type / PVC (polyvinyl chloride)

Valveless self-priming magnet drive pump GV

PP (polypropylene)

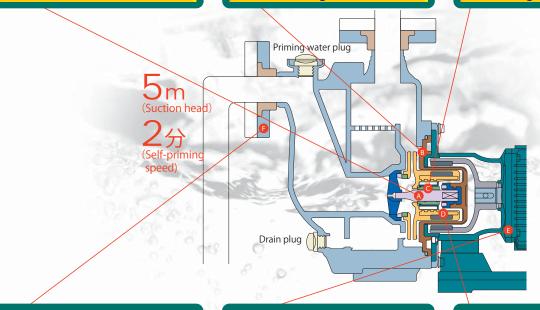
Valveless self-priming magnet drive pump GVF

etrafluoroethylene, Ethylene copolymer) moldina

Thought-out shaft about durability with two points.

- ●The durability of the shaft gets dramatically better by the two points support
- SiC shaft which resists abrasion well

Air release structure of the rear casing with measures to prevent


- Air release structure of the rear casing and air stay prevention of the impeller fulfill measures agains
- ●Carbon fiber is adopted to reinforce the rear casing and the pressure resistance gets dramati

Variety of Bearing against wide range of liquid.

- OSelectable bearing depending on use
- 4 types of material: Carbon/Ceramics/

Bearing

No need to adjust the position of the bolt holes when installation.

•Loose flange is adopted to fit to the other side freely and possible to replace from other maker's pump with free from worry about connecting dimension.

E Exclusive motor (with Terminal bo

The exclusive motor is outdoor type as standard and the durability gets better.

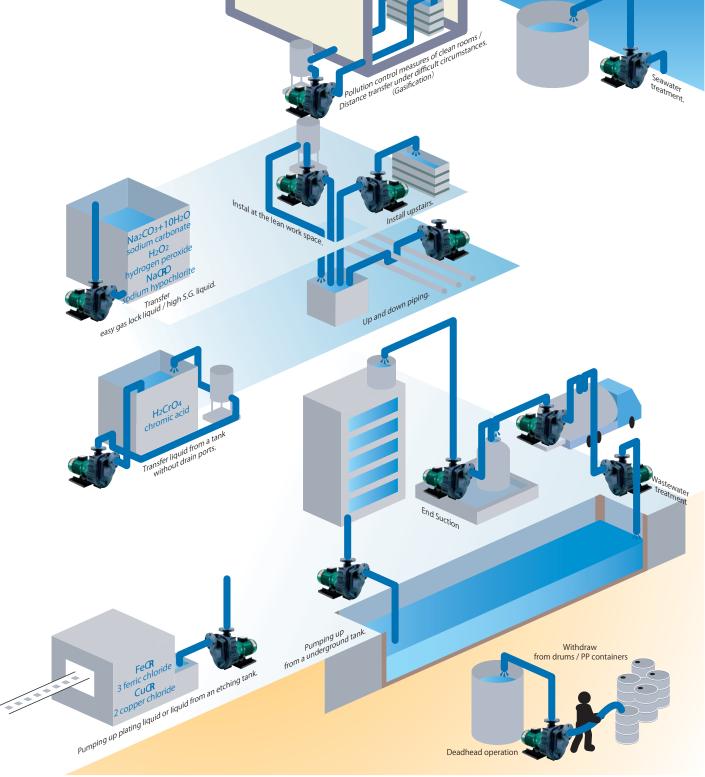
- Reinforced plastic terminal box does not ruin and can be used in a chemical atmosphere. Besides, it is placed at the top of the motor to wire easily.
- corrosion and liquid leakage. It increases the motor life very much.
- When usning the invertor with 400V, the motor is

D Impeller & Magnet

Rare earth magnet is adopted and makes the impeller compact. (1.5kW and more)

- Powerful rare earth magnet is adopted.(1.5kW and more) It delivers superior performance.
- The impeller is integrated with the magnet and has a resistance to inverse rotation and high
- Our original impeller shape is high efficiency.

JPN, USA, CAN, TWN, GER, FRA,

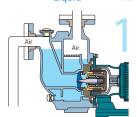

• 5m self-priming ability expands versatility. • For easy gas lock liquid, hazarous liquid, high S.G. liquid.

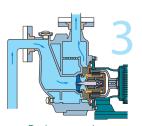
• No need a drain port when pumping up from the top of a tank.

- Long horizontal suction piping is possible.

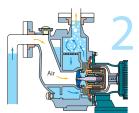
liquid leakage.

- Possible to install it far from a tank or filter.
- Stringent instal condition has a great reduction.
- Up and down suction piping is possible.
- No need foot valves.

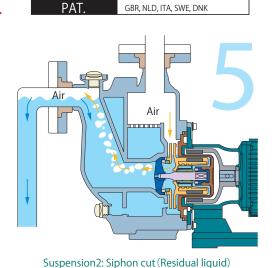



The pump can be used for all types of installation site such as

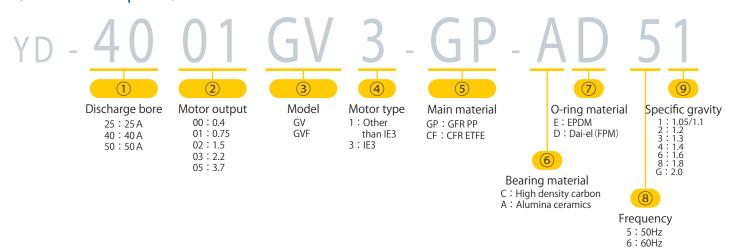
horizontal suction piping or under stringent conditions.


It is also effective to take measures against earthquakes or

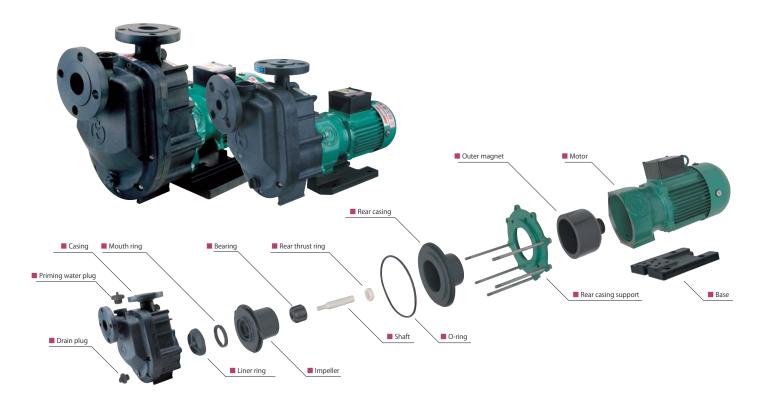
The principle of residual Self-priming liquid.



During operation

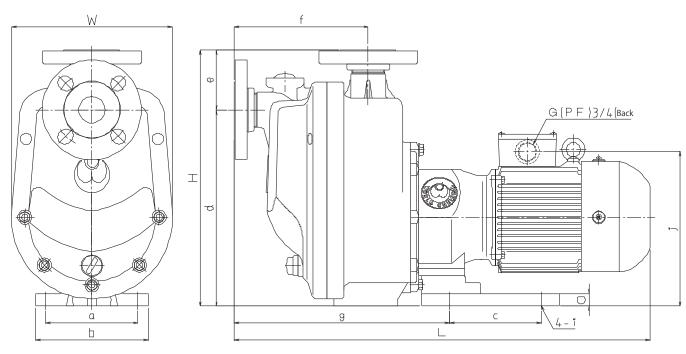


Liquid flows back after stop the operation, but our original siphone cut structure holds the liquid quickly and remains enough self-priming liquid in the casing.



〈 Model description 〉

⟨ Exploded view ⟩


〈 Material 〉

Dart name	Mat	erial					
Part name	GV series	GVF series					
Casing	GFR PP	CFR ETFE					
Priming water plug	GFR PP	CFR ETFE					
Drain plug	GFR PP	CFR ETFE					
Liner ring	Alumina ceramics + GFR PPS	Alumina ceramics + CFR ETFE					
Mouth ring	CFR	PTFE					
Impeller	(GFR) PP + Magnet	CFR ETFE + Magnet					
Bearing	Carbon / Ceramics / SiC						

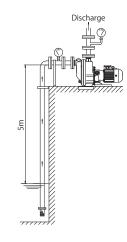
^{**} The exploded view is for only explanation of the structure. Parts are sold as a set. For more information, contact us.

Part name	Mat	erial				
Fait Hairie	GV series	GVF series				
Shaft	Alumina ce	nina ceramics / SiC				
Rear thrust ring	Alumina ceramics / SiC					
Rear casing	GFR PP	CFR ETFE				
Rear casing support	FC	200				
Outer magnet	FCD450-10) + Magnet				
Motor	FC200 + Alumi frame motor					
Base	GFR PP/FC200					
O-ring	EPDN	I/FPM				

⟨ Outline dimension ⟩

⟨ Dimension ⟩

	(mm)																
Model	W	Н	L	a	b	С	d	е	f	g	i	j	0		Weight(kg)		
YD-2500GV1			533								12	200			18.5		
YD-2501GV(F)3	196	196	196	325	560	130	160	130	255	70	167	275	φ12	207	18		20.5(23.0)
YD-2502GV(F)3			592								φ12	215			24.5(27.0)		
YD-4001GV(F)3			590					84	190	305	φ12	217	18		22.5(25.0)		
YD-4002GV(F)3	228	360		130	160	130	276					225			26.5(29.0)		
YD-4003GV(F)3			622												29.0(31.5)		
YD-5002GV(F)3		390	642	208		200	297				14-36	226	21		29.5(32.5)		
YD-5003GV(F)3	248	390	643	208	260	200	297	93	206	309	14-30	236	21		32.0(35.0)		
YD-5005GV(F)3		389	684	230		261	296				36-14	245	20		53.0(56.0)		
The form of Airborn Clifford																	

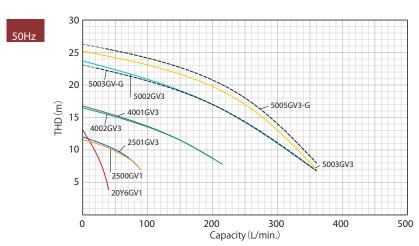

The figure in () is shown GVF series.

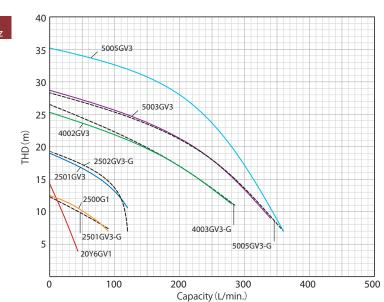
Liquid temperaure and Self-priming ability

Test model: YD-	Test model: YD-4001GV3-GP-CD5 (Used fluid: Water) (Our experimental data)											
Liquid ter	mperature	40 °C	45 ℃	55 ℃	60 ℃							
Height 2m	Suction	29 sec.	36 sec.	35 sec.	44 sec.	49 sec.						
Height zin	Full discharge	58 sec.	1min. 09 sec.	1min. 10 sec.	1min. 16 sec.	1min. 23 sec.						
Height 4m	Suction	1min. 03 sec.	1min. 16 sec.	1min. 20 sec.	1min. 30 sec.	1min. 50 sec.						
Height 4m	Full discharge	1min. 31 sec.	1min. 47 sec.	1min. 52 sec.	2min. 07 sec.	2min. 20 sec.						
Hoight 5m	Height 5m Suction Full discharge		_	_	_	_						
Height 5iii			_	_	_	_						

 $[\]ast$ The time of discharge at Height 5m (20 $^{\circ}\text{C})$ is 1 min. 48 sec.

Suction: The time until which liquid starts to enter into the pump.
Full discharge: The time until which liquid is stable the discharge from the pump.



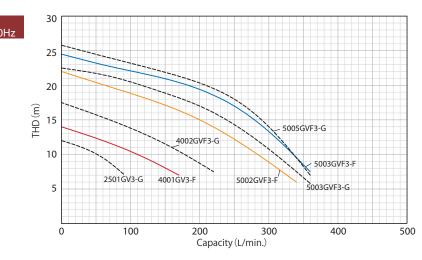

■GV series (Main material: GFR PP)

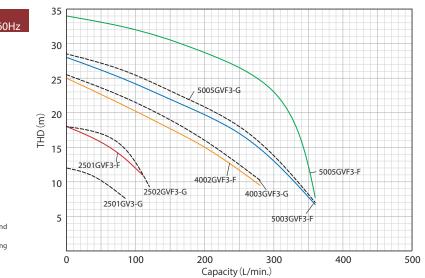
⟨ Standard performance ⟩

	Bore	e (mm)		E3 Standard pe	erformance (L/n	nin m)	_	V. I.					
Model	C	Dis.	50	Hz	60	0Hz	Outoput (kW)	Voltage (V)					
	Suc. Di		Std. spec.	Std. S.G.	Std. spec.	Std. S.G.	(KVV)	(*)					
YD-2500GV1			8-80	1.05	8-80	1.05	0.4	3PH/200V					
VD 2504 CV2	2.5	25		2.0	12-110	1.1	0.75	2011 (200)					
YD-2501GV3	25	25	8-80	2.0	8-80	1.8	0.75	3PH/200V					
YD-2502GV3			_			2.0	1.5	3PH/200V					
YD-4001GV3			11-160	1.1	_	_	0.75	3PH/200V					
YD-4002GV3	40	40	40	40	40	40	40	11-160	1.8	17-200	1.1	1.5	3PH/200V
YD-4003GV3			_	_	17-200	1.4	2.2	3PH/200V					
YD-5002GV3			17-200	1.1	_	_	1.5	3PH/200V					
VD =======			17-200	1.1			2.2	2011 (200)					
YD-5003GV3	50	50	18-250	1.4	_	1.1	2.2	3PH/200V					
VD 50056V2				1.0	28-200	1.2	2.7	2011 /2001/					
YD-5005GV3			18-250 1.8		28-200	1.6	3.7	3PH/200V					

〈 Performance curve 〉

^{*}The data is for clear water at 20℃ and flooded suction.


* Ensure the following min. flow rate during


■GVF series (Main material: CFR ETFE)

	Bore	(mm)	IE3	Standard perfo	ormance (L/min	m)			
Model	Suc. Dis.		50	Hz	6	0Hz	Output (kW)	Voltage (V)	
	Suc.	DIS.	Std. spec.	Std. S.G.	Std. spec.	Std. S.G.	(KVV)	(V)	
			0.00	2.0	12-100	1.1	0.75	2011 /2001/	
YD-2501GVF3	25	25	8-80	2.0	8-80	1.6	0.75	3PH/200V	
YD-2502GVF3			_	_	12-105	1.8	1.5	3PH/200V	
YD-4001GVF3			10-110	1.1	_	_	0.75	3PH/200V	
YD-4002GVF3	40	40	11-160	1.6	15-200	1.1	1.5	3PH/200V	
YD-4003GVF3					16-200	1.3	2.2	3PH/200V	
YD-5002GVF3			15-200	1.1	_	_	1.5	3PH/200V	
YD-5003GVF3			17-200	1.1	17.250	1.1	2.2	3PH/200V	
1D-5003GVF3	50	50	17-200	1.4	17-250	1.1	2.2	3F11/ 200V	
YD-5005GVF3			10 250	1.0	23-300	1.1	3.7	2DH /200V	
10-300364F3			18-250	1.8	18-250	1.6	5./	3PH/200V	

⟨ Standard performance ⟩

^{*}The data is for clear water at 20°C and flooded suction.

*Ensure the following min. flow rate during operation to cool sliding parts.

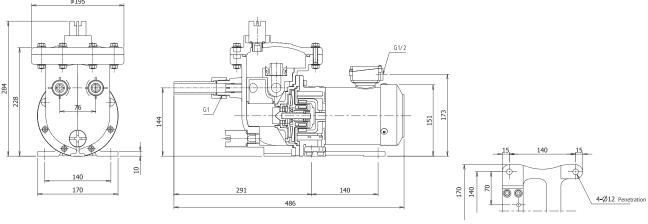
Motor output 0.4 ~ 0.75kW:10 L/min.

Motor output 1.5 ~ 3.7 kW:20 L/min.

operation to cool sliding parts.

• Motor output 0.4 ~0.75kW: 10 L/min.

[•] Motor output 1.5 \sim 3.7 kW : 20 L/min.



Small self-priming pump

The pump is made of CFR PP and possible to use for strong alkali and liquid with hydrofluoric acid!

⟨ Model description ⟩

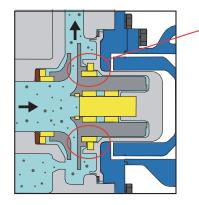
⟨ Standard performance ⟩

5				Standard perfor	rmance (m-L/min.)			
Model	Bore (mm)	Power supply	Limit of S.G.	50Hz	60Hz	Output (kW)	Weight (kg)	
	(11111)			Std. spec.	Std. S.G.	(KVV)	(kg)	
YD-20Y6GV1	20A union	3PH 200-220V	1 2	6 - 30	7 - 30	0.26	10.0	
YD-20A6GV1	(G1 thread)	1PH 100-110V	1.2	0-30	7 - 30	0.20	10.0	

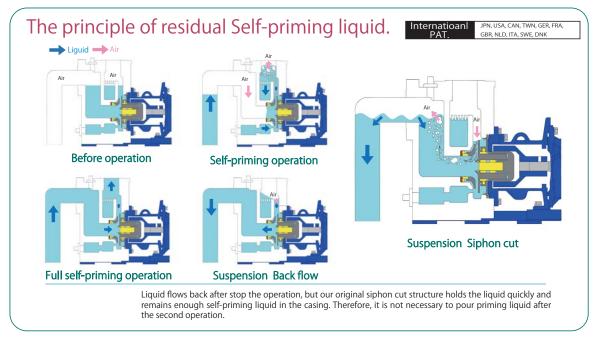
Big self-priming pump

High self-priming ability!

8005GV: Suction 3 m in 1 min. 30 sec.


The structure that gas and liquid are separated efficiently reduces the self-priming loss and miximixes the pump performance.

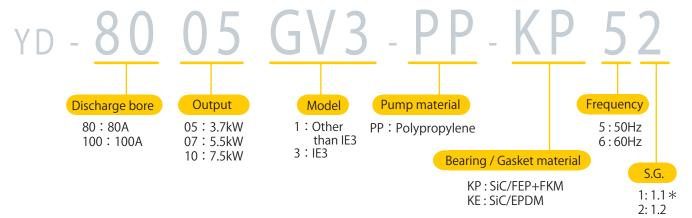
Resistant to dry running!


Our original valveless structure (Internatioanl PAT.) leaves enough priming liquid for restart without check valves.

- High performance.
 Max. TDH 25 m Max. Capacity 1,300 L/min. (YD-10010GV · 60Hz)
- Safe and efficient maintenance for back pull out method.
- High efficiency motor is adoped as standard. (*IE2)
- No liquid leakage for magnet drive method.
- Resistant to deadhead operation.

Resistant to slurry / sludge! (Impeller wear ring structure)

- The size of slurry / sludge, which can pass through to the casing is just only 0.127 mm or less by the impeller wear ring. It protects the magnet can and rear casing from abrasion.
 * If you would like to use the pump for liquid with slurry, contact us.
- SiC material is adopted as sliding parts. (Yellow parts in the left picture.)



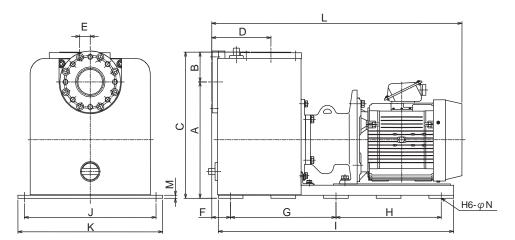
0

Big self-priming pump

⟨ Model description ⟩

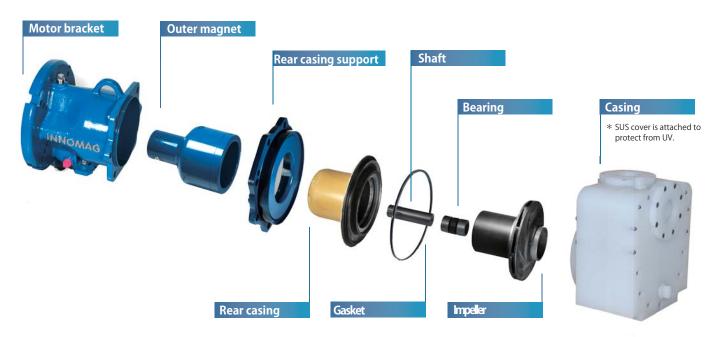
*Only YD-10007GV3 60Hz

⟨ Standard performance ⟩


Model	Bore	Output	IE3 Std. performa	ance (L/min - m)	Weight	Self-priming	
Model	(Suc.× Dis.)	(kW)	50Hz	60Hz	(kg)	limit height (m)	
YD-8005GV3	80A×80A	3.7	20-	500	110		
YD-10007GV3	1004 × 1004	5.5	14-800 12-800(SG1.1)		186	4.0 (Clear water	
YD-10010GV3	100A×100A	7.5	12-1	200	193	at 20°C)	

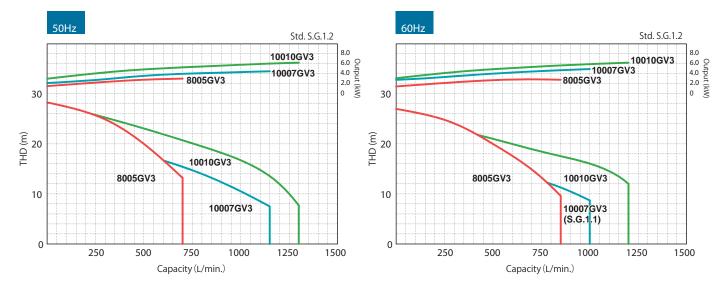
*Impeller & Rear casing are subject to the list control. When exporting them, please get the permission from the Minister of Economy, Trade and Industry.

*The pump is subject to the catch-all control. When exporting it, observe the Export Trade Control Order and process it properly.


*The catalogue contents are subject to change without notice due to product improvement.

⟨ Outline dimension ⟩

														(11111)
Model	А	В	C	D	Е	F	G	Н	1	J	K	L	М	N
YD-8005GV3	348	89	437	180	32	57.5	320	320	715	400	440	763.5	9	φ15
YD-10007GV3	200	100	400	211	21	212.5	210	210	050	460	500	000	0	15
YD-10010GV3	380	102	482	211	31	212.5	310	310	850	460	500	908	9	φ15


⟨ Exploded view ⟩

〈 Material 〉

Part name	Material	Part name	Material		
Casing	PP +SUS cover	Rear casing	CFR-ETFE+Kevlar reinforced		
Impeller	CFR-ETFE	Rear casing support	Ductile iron		
Bearing	SiC	Outer magnet	Ductile iron + Rare earth magnet		
Shaft	SiC	Motor bracket	Ductile iron		
Gasket	FEP+FKM / EPDM	Motor	Aluminum alloy		
	(FKM is a high chemical resistant gasket covered with FEP capsule.)	Base	SS400		

< Performance curve >

12 13

15

2500~5005GV/GVF series

⟨ Installation ⟩

The pump can be used for all types of installation site such as horizontal suction piping or under stringent conditions. It is also effective to take measures against earthquakes or liquid leakage.

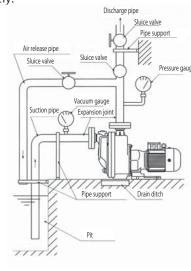
- No need a drain port when pumping up from the top of a tank.
- 5m self-priming ability expands versatility.
- For easy gas lock liquid, hazarous liquid, high S.G. liquid.
- Long horizontal suction piping is possible.

- Possible to install it far from a tank or filter.
- Stringent instal condition has a great reduction.
- Up and down suction piping is possible.
- No need foot valves.

1) Caution when installation

- 1 If air enters from the joint of the suction pipe, it cuase pumping failure and damage.
- The suction pipe goes into the negarive pressure. If air enters form the attachment failure of the joint, liquid does not enter and pumping failure happens. It may cause the pump breakdown.
- Use the suction pipe whose bore is the same as the bore of the pump suction inlet.
 If the pipe bore is bigger than the pump bore, it may cause self-priming failure to reduce the self-priming ability.
- Set that the suction pipe bore is more than twice and OFF level.
 If operate the pump at less than this, it cuase dry running for air entrainment.
- ② Attache a strainer to the suction pipe to prevent dirty or foreign objects entering.

However, clean the strainer to remove the clogging periodically and minimize the loss resistance.

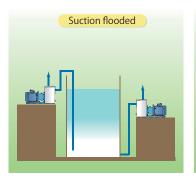

- ③ It is recommended to place check valves at the discharge rising pipe to prevent water hammer as follows. Bypass pipes are also recommended to place underneath for air release. (If not, self-priming failure may occurs.)
- The discharge pipe is long and the total head is 10 m and more.
- The tip of the discharge pipe is 9 m and more higher than the suction tank.
- The piping condition is to use 2 and more pumps in parallel.
- 4 Install bendings and expansion joints not to leak liquid by the pump deformation for the pipes' heat expansion.
- (5) Main parts insdie the pump are made of plastic. Handle them with care not to make an impact.
- 6 When the self-prming pump is used for easy bubbling liquid such as surfactant liquid, foot valves are recommended. * If not, clean and check it for functional maitenance.

2) Prohogition of flange uneven tightening and overtightening

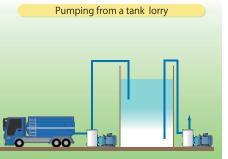
- 1) Align the pipe flange parallel to the pump flange and do not tighten bolts excessively.
- ② When piping, adjust the assembling dimensions. If assemble while not fit in, the pump casing may be damaged. Moreover, uneven tightening may cause liquid leakage from packings. Tighten it diagonally and evenly.

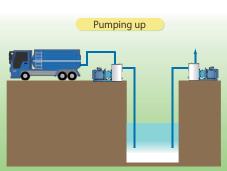
3) Prohibition of piping load

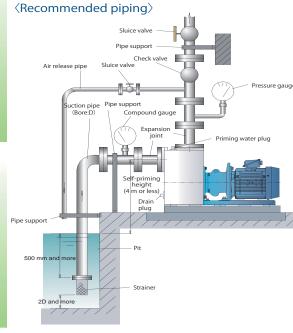
- ① Be completely subjected to a piping load by pipe supports.
- 2 When the temperature of liquid is high (40°C and more), install bendings and expansion joints not to be applied a load to the pump by heat expansion of pipes.
- ③ Do not use metal pipes as much as possible and use the plastic one. **Especially, metal pipes are often used for strong sulfuric adid and caustic soda and obey the above prohibitions ② & ③.



■8005~10010GV series


⟨ Installation ⟩


The pump can be used for all types of installation site such as horizontal suction piping or under stringent conditions. It is also effective to take measure against earthquakes or liquid leakage.


- No need a drain port when pumping up from the top of a tank.
- Installation far from a tank is possible.
- Self-priming ability is 4 m.
- The conventional stringent condition is eased dramatically.*When the suction pipe is long or deadhead operaiont, contact us.
- Deadhead operation is possible.
- Up and down suction piping is possible.
- Long horizontal piping is possible.
- No need foot valves.

Deadhead operation

1) Suction piping

- ① Be in the same the bore of the suction pipe as the pump bore.
- ② The horizontal length of the suction pipe is 1 m or less.

If it is 1 m and more, air volume in the suction pipe becomes big and self-priming ability is dramatically reduced. It may cause the pump damage.

- ③ Submerge the tip of the suction pipe 500 mm and more to prevent air entrainment.
- $\textcircled{4} When the instal level is lower than the liquid level for up and down piping, install sluice valves for maintenance.}$
- ⑤ Do not make air pockets in the suction pipe and install the suction pipe up grade gently to the pump.
- **6** Install the air release pip as far as from the suction pipe possible.
- The set of the suction pipe bore is more than twice and OFF level. If operate the pump at less than this, it cuase dry running for air entrainment.
- ® Place a strainer at the suction inlet of the pipe to prevent dirty or foreign objects.
 However, clean the strainer to remove clogging periodically and minimize the loss resistance.

2) Discharge pipe

- $\ensuremath{\textcircled{1}}$ Be in the same the bore of the discharge pipe as the pump bore.
- If the bore becomes small, air release failure occurs during self-priming operation and the ability is decreased. The flow rate also may increase for increaseing of the piping loss resistance.
- ② Install check valves to prevent water hammer as follows.
- The suction pipe is long or the discharge head is 10 m and more.
- The actual head (from the liquid leve in a suction to the tip of the discharge pipe) is 9 m and more.
- The condition is to use 2 and more pumps in parallel.
- 3 Attache sluice valves to the discharge pipe for maintenance.
- 4 Install a pressure gauge to check operation in a daily check.

14

made for your process

- Expert advice
- A customer-oriented organization that adapts to the requirements and wishes of your organization
- Innovative and customized solutions
- Breakdownservice, 24 hours a day, 7 days a week

- Technical service with extensive test facilities, working from our own workplace or at your location
- A fast and appropriate solution for all your issues
- Wide range of liquid pumps
- Repair, maintenance and revision

BEDU POMPEN B.V. Poort van Midden Gelderland Rood 10 6666 LT HETEREN Nederland Telefoon +31 (0)88 4802 900

sales@bedu.eu E-mail

WWW.BEDU.NL

BEDU BELGIUM B.V.B.A. Industriepark-West 75 9100 SINT-NIKLAAS Telefoon +32 (0)3 80 87 980

E-mail sales@bedu.eu

